| 發表文章 | 發起投票 |
膠登數學討論區
本貼文共有 210 個回覆
此貼文已鎖,將不接受回覆
Let {X_n} seq.
點樣可以general地構造uncountable咁多個subseq?
Let P be power set of \mathbb{N}
Set of all subsequence of X_n = \{\{X_i\}_{i\inP}\}自膠 應該係咁:
Let P be set of all infinite subset of \mathbb{N}
Set of all subsequence of X_n = \{\{X_i\}_{i\inP}\}
呢個方法work但係寫唔到出黎

留個名支持先
Let {X_n} seq.
點樣可以general地構造uncountable咁多個subseq?
Let P be power set of \mathbb{N}
Set of all subsequence of X_n = \{\{X_i\}_{i\inP}\}自膠 應該係咁:
Let P be set of all infinite subset of \mathbb{N}
Set of all subsequence of X_n = \{\{X_i\}_{i\inP}\}
呢個方法work但係寫唔到出黎![]()
[哲學題] 咩叫寫到出黎?
[/哲學題]無知問句
我係2013DSE 有修m2 本身對數都好有興趣 如果想了解下number theory 有冇書比新手 巴打介紹下

Sorry 1999
我係2013DSE 有修m2 本身對數都好有興趣 如果想了解下number theory 有冇書比新手 巴打介紹下

Sorry 1999

我係講緊uncountable咁多個subseq,唔係uncountable seq呀。Let {X_n} seq.
點樣可以general地構造uncountable咁多個subseq?
我剩係諗到一個方法:
let P be set of prime
say S = Power set of P, then S is uncountable
[#FF0000]for {p_1,...,p_k} belongs to S
maps to seqs: {X_n} for n=p_i^j, 1<=i<=k, j is integer.[/#FF0000]
then the maps gives uncountable subseq.
仲有冇其他方法
當你一話個index set 係 `NN`時, 已經做緊一個 countable subsequence, 因為countable 或 uncountable 與否是看index set.
power set of integer唔work, 我講少左野, 要inf. subseq, not finite subseq.
我終於明白你講咩.... 根本係trivial.
你要明白咩係 subsequence.
Suppose there exists a function $\mathcal X: \mathbb N \to X$. 非常明顯, $\mathcal X = \left\{x_n \right\}_{n \in \mathbb N}$ is a sequence. 若然 $ \Psi: \mathbb N \to \mathbb N$ 係一個strictly increasing function, 根據定義 $\mathcal X \circ \Psi: \mathbb N \to X$ 都是一個sequence. 而我們就定義 $\mathcal X \circ \Psi$ 為 subsequence.
同時, 我們已知道$\#\psi$ 係 uncountable, where $\psi = \left\{ \Psi_i \forall i \right\}. 所以任何一個sequence 都有uncountably many subsequences.
我係講緊uncountable咁多個subseq,唔係uncountable seq呀。Let {X_n} seq.
點樣可以general地構造uncountable咁多個subseq?
我剩係諗到一個方法:
let P be set of prime
say S = Power set of P, then S is uncountable
[#FF0000]for {p_1,...,p_k} belongs to S
maps to seqs: {X_n} for n=p_i^j, 1<=i<=k, j is integer.[/#FF0000]
then the maps gives uncountable subseq.
仲有冇其他方法
當你一話個index set 係 `NN`時, 已經做緊一個 countable subsequence, 因為countable 或 uncountable 與否是看index set.
power set of integer唔work, 我講少左野, 要inf. subseq, not finite subseq.
我終於明白你講咩.... 根本係trivial.
你要明白咩係 subsequence.
Suppose there exists a function $\mathcal X: \mathbb N \to X$. 非常明顯, $\mathcal X = \left\{x_n \right\}_{n \in \mathbb N}$ is a sequence. 若然 $ \Psi: \mathbb N \to \mathbb N$ 係一個strictly increasing function, 根據定義 $\mathcal X \circ \Psi: \mathbb N \to X$ 都是一個sequence. 而我們就定義 $\mathcal X \circ \Psi$ 為 subsequence.
同時, 我們已知道$\#\psi$ 係 uncountable, where $\psi = \left\{ \Psi_i \forall i \right\}$. 所以任何一個sequence 都有uncountably many subsequences.
無知問句
我係2013DSE 有修m2 本身對數都好有興趣 如果想了解下number theory 有冇書比新手 巴打介紹下![]()
Sorry 1999
教科書:
Niven, Zuckerman, Montgomery, An Introduction to the theory of numbers, 5th edition, John Wiley and Sons, Inc
呢本有D難:
The Queen of Mathematics: A Historically Motivated Guide to Number Theory
無知問句
我係2013DSE 有修m2 本身對數都好有興趣 如果想了解下number theory 有冇書比新手 巴打介紹下![]()
Sorry 1999

有explanations, 有 solutions, 有大量examples, 適合任何人士閱讀。
其實, 我知你想講 $\bar \mathbb R$, two-point compactification of `RR`. 但這個只是為方便, 例 我話一個sequence diverge, 但又可以話一個sequence converges in `bar RR`,根本無實際意義。另外,如measure theory, Beppo Levi theorem 就是要用 `bar RR`, 免得要分多幾個cases。 其實, 你可以話係懶, 多過有特別意義。
好多 function 會 d 左個 infinity 出黎
例如 sqrt(x) at x = 0 既 derivative 係 infinity
所以D人研究 Lp spaces 避唔開要放埋 infinity 落去
你可否講清楚你是講緊 $L^p$ Lebesgue space 還是 $W^{1, p}$ Sobolev space 呢?
你可否講清楚你是講緊 $L^p$ Lebesgue space 還是 $W^{1, p}$ Sobolev space 呢?
$L^p$ space. Anything wrong?

秒後自動載入第5頁
| 發表文章 | 發起投票 |
自膠 應該係咁: