| 發表文章 | 發起投票 |
膠登打math symbols入門
本貼文共有 63 個回覆
此貼文已鎖,將不接受回覆
冇得preview好煩
MathJax 那方面是有preview 版, 皆因這個不是admin 放下去, 所以請去 以下網頁做preview
http://cdn.mathjax.org/mathjax/latest/test/sample-dynamic-2.html
`|x|={ (x), (-x) :}`
$\begin{CD}
A @>>> B @>{\text{very long label}}>> C \\
@VVV @VVV @VVV \\
D @>>> E @>{\phantom{\text{very long label}}}>> F
\end{CD}$
A @>>> B @>{\text{very long label}}>> C \\
@VVV @VVV @VVV \\
D @>>> E @>{\phantom{\text{very long label}}}>> F
\end{CD}$
暫時對數學符號 大過 或 細過, 都是用code 比較穩妥
`A le B text{ or } A ge B`
`A gt B text{ or } A lt B`
`A le B text{ or } A ge B`
`A gt B text{ or } A lt B`
In equation \eqref{eq:sample}, we find the value of an
interesting integral:
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
interesting integral:
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
In equation \eqref{eq:sample}, we find the value of an
interesting integral:
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
\begin{equation*}
\sum_{i=1}^\infty \frac{1}{i^2} = \frac{\pi^2}{6}
\label{eq:sample2}
\end{equation}
Testing Testing Testing....
interesting integral:
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
\begin{equation*}
\sum_{i=1}^\infty \frac{1}{i^2} = \frac{\pi^2}{6}
\label{eq:sample2}
\end{equation}
Testing Testing Testing....
In equation \eqref{eq:sample}, we find the value of an
interesting integral:
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
\begin{equation*}
\sum_{i=1}^\infty \frac{1}{i^2} = \frac{\pi^2}{6}
\label{eq:sample2}
\end{equation*}
Testing Testing Testing....
In both equations \eqref{eq:sample} and \eqref{eq:samples2}, we find the value of an
interesting integral:
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
\begin{equation}
\sum_{i=1}^\infty \frac{1}{i^2} = \frac{\pi^2}{6}
\label{eq:sample2}
\end{equation}
Testing Testing Testing....
interesting integral:
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
\begin{equation}
\sum_{i=1}^\infty \frac{1}{i^2} = \frac{\pi^2}{6}
\label{eq:sample2}
\end{equation}
Testing Testing Testing....
a^n,
$a^n$
秒後自動載入第6頁
| 發表文章 | 發起投票 |
